Search results for "Maxwell's equation"

showing 10 items of 40 documents

Levy flights and nonlocal quantum dynamics

2013

We develop a fully fledged theory of quantum dynamical patterns of behavior that are nonlocally induced. To this end we generalize the standard Laplacian-based framework of the Schr\"{o}dinger picture quantum evolution to that employing nonlocal (pseudodifferential) operators. Special attention is paid to the Salpeter (here, $m\geq 0$) quasirelativistic equation and the evolution of various wave packets, in particular to their radial expansion in 3D. Foldy's synthesis of "covariant particle equations" is extended to encompass free Maxwell theory, which however is devoid of any "particle" content. Links with the photon wave mechanics are explored.

PhysicsHigh Energy Physics - TheoryQuantum PhysicsPhotonStatistical Mechanics (cond-mat.stat-mech)Wave packetQuantum dynamicsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Schrödinger equationsymbols.namesakeMaxwell's equationsHigh Energy Physics - Theory (hep-th)symbolsSchrödinger pictureMatter waveQuantum Physics (quant-ph)QuantumCondensed Matter - Statistical MechanicsMathematical PhysicsMathematical physics
researchProduct

Unified Field Theory and Occam's Razor: Simple Solutions to Deep Questions

2021

Unified Field Theory was an expression first used by Einstein in his attempt to unify general relativity with electromagnetism. Unified Field Theory and Occam's Razor attempts to provide real answers to foundational questions related to this unification and should be of high interest to innovative scientists. A diverse group of contributing authors approach an old problem with an open-mindedness that presents a new and fresh perspective. The following topics are discussed in detail in the hope of a fruitful dialogue with all who are interested in this subject: The composition of electrons, photons, and neutrinos. The relationship of quantum mechanics to general relativity. The four-componen…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniZitterbewegungSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciField TheoryMaxwell's Equations
researchProduct

Unconditionally stable meshless integration of Maxwell's eqautions

2013

Settore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaMaxwell's equationsMeshless methodleapfrog ADI
researchProduct

Partial data inverse problems for Maxwell equations via Carleman estimates

2015

In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim-Uhlmann and Kenig-Sj\"ostrand-Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.

Inverse problemsELECTRODYNAMICSINFORMATIONadmissible manifoldsWEIGHTSMathematics::Analysis of PDEsBoundary (topology)InverseBOUNDARY-VALUE PROBLEMCALDERON PROBLEMpartial data01 natural sciencesMATERIAL PARAMETERSinversio-ongelmatsymbols.namesakeMathematics - Analysis of PDEsFOS: Mathematics35R30 35Q61111 MathematicsMaxwellin yhtälötBoundary value problemUniqueness0101 mathematicsPartial dataMathematical PhysicsMathematicsAdmissible manifoldsApplied Mathematicsta111010102 general mathematicsMathematical analysisScalar (physics)Inverse problemCarleman estimatesSmall set010101 applied mathematicsUNIQUENESSMaxwell's equationsMaxwell equationsLOCAL DATAsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

On the theory of domain structure in ferromagnetic phase of diluted magnetic semiconductors

2006

Abstract We present a comprehensive analysis of domain structure formation in ferromagnetic phase of diluted magnetic semiconductors (DMS) of p-type. Our analysis is carried out on the base of effective magnetic free energy of DMS calculated by us earlier [Yu.G. Semenov, V.A. Stephanovich, Phys. Rev. B 67 (2003) 195203]. This free energy, substituting DMS (a disordered magnet) by effective ordered substance, permits to apply the standard phenomenological approach to domain structure calculation. Using coupled system of Maxwell equations with those obtained by minimization of above free energy functional, we show the existence of critical ratio ν cr of concentration of charge carriers and ma…

Physicssymbols.namesakeMagnetic domainCondensed matter physicsMaxwell's equationsFerromagnetismMagnetPhase (matter)symbolsGeneral Physics and AstronomyCharge carrierMagnetic semiconductorFinite thicknessPhysics Letters A
researchProduct

On the Theory of Domain Structure of Disordered Ferroelectrics

2009

We present a comprehensive analysis of domain structure formation in ferroelectric phase of incipient ferroelectrics with off-center dipole impurities like KTaO 3 :Li, Nb,Na. Our analysis is carried out on the base of effective free energy of disordered ferroelectrics, derived by us earlier. This free energy permits to apply the standard approach to domain structure calculation. Using coupled system of Maxwell equations with those obtained by minimization of above free energy, we calculate the physical characteristics of domain structure as functions of impurity dipoles concentration n. Our theory can be easily generalized for arbitrary temperature and crystal shape including thin films.

Materials scienceStructure formationCondensed matter physicsCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic MaterialsSpontaneous polarizationCondensed Matter::Materials ScienceDipolesymbols.namesakeMaxwell's equationsImpuritysymbolsThin filmPhase diagramFerroelectrics
researchProduct

A Smoothed Particle Interpolation Scheme for Transient Electromagnetic Simulation

2006

In this paper, the fundamentals of a mesh-free particle numerical method for electromagnetic transient simulation are presented. The smoothed particle interpolation methodology is used by considering the particles as interpolation points in which the electromagnetic field components are computed. The particles can be arbitrarily placed in the problem domain: No regular grid, nor connectivity laws among the particles, have to be initially stated. Thus, the particles can be thickened only in distinct confined areas, where the electromagnetic field rapidly varies or in those regions in which objects of complex shape have to be simulated. Maxwell’s equations with the assigned boundary and initi…

Electromagnetic fieldPhysicsElectromagnetic (EM) transient analysiNumerical analysisMesh-free numerical techniqueSPHMathematical analysisFinite-difference time-domain methodNumerical MethodElectronic Optical and Magnetic MaterialsRegular gridsymbols.namesakeSmoothed particle interpolationSettore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaClassical mechanicsMaxwell's equationsElectromagnetismsymbolsParticleElectrical and Electronic EngineeringInterpolation
researchProduct

Transmission line meshes for computational simulation of electromagnetic modes in the Earth's atmosphere

2007

PurposeTwo transmission line meshes to simulate electromagnetic waves in the Earth's atmosphere are developed, one with the link transmission lines connected in parallel and the other with connections in series.Design/methodology/approachThe equations describing propagation of waves through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in a spherical cavity with lossy dielectric material between the external conducting surfaces, respectively.FindingsThe transmission line meshes are used for a numerical study of the natural electromagnetic noise due to lightning discharges in the Earth‐ionosphere cavity.Originality/valueThe numerical algorithm f…

EngineeringSeries (mathematics)Schumann resonancesbusiness.industryApplied MathematicsLightningElectromagnetic radiationComputer Science ApplicationsComputational physicssymbols.namesakeElectric power transmissionComputational Theory and MathematicsMaxwell's equationsTransmission linesymbolsElectronic engineeringPolygon meshElectrical and Electronic EngineeringbusinessCOMPEL - The international journal for computation and mathematics in electrical and electronic engineering
researchProduct

Noncoaxial Inductance Calculations Without the Vector Potential for Axisymmetric Coils and Planar Coils

2008

This paper presents an exact method for calculating the mutual inductance between a general axisymmetric coil and a second planar coil consisting of either a disk coil or a planar loop of essentially arbitrary shape. The approach is based directly on the magnetic field rather than the vector potential . The paper gives detailed results for two circular loops, a circular loop and an elliptic loop, and a circular loop and an annular disk coil. The method can be extended to cover the cases where all these loops and coils are extruded in the axial direction to give the corresponding solenoids. The method is also applicable to calculations for nuclear radiation detectors.

Electromagnetic fieldPhysicsMechanicsElectronic Optical and Magnetic MaterialsMagnetic circuitLoop (topology)Inductancesymbols.namesakeClassical mechanicsPlanarMaxwell's equationsElectromagnetic coilsymbolsElectrical and Electronic EngineeringVector potentialIEEE Transactions on Magnetics
researchProduct

A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the Transmission Line Matrix method

2006

[1] The effect of the Earth-ionosphere electromagnetic cavity on the spectrum of an atmospheric signal generated by a broadband electrical current source is analyzed numerically by means of the Transmission Line Matrix (TLM) method. Two new TLM meshes are developed, one with transmission lines connected in parallel and the other with connections in series. The equations describing propagation through these parallel or series meshes are equivalent to the Maxwell equations for TEr or TMr modes in the spherical Earth-ionosphere cavity, respectively. The numerical algorithm obtains Schumann resonance frequencies very close to the experimental ones, confirming that this methodology is a valid nu…

Atmospheric ScienceSoil ScienceTransmission-line matrix methodAquatic ScienceOceanographysymbols.namesakeOpticsGeochemistry and PetrologyTransmission lineElectromagnetic cavityEarth and Planetary Sciences (miscellaneous)Earth-Surface ProcessesWater Science and TechnologyPhysicsEcologySchumann resonancesbusiness.industryPaleontologyResonanceForestryComputational physicsGeophysicsMaxwell's equationsSpace and Planetary SciencesymbolsIonospherebusinessMatrix methodJournal of Geophysical Research
researchProduct